Baoqi Shi 1,2†Yi-Han Luo 2,3†Wei Sun 2Yue Hu 2,3[ ... ]Junqiu Liu 2,4,*
Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 International Quantum Academy, Shenzhen 518048, China
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
5 e-mail: atwang@ustc.edu.cn
Tunable lasers, with the ability to continuously vary their emission wavelengths, have found widespread applications across various fields such as biomedical imaging, coherent ranging, optical communications, and spectroscopy. In these applications, a wide chirp range is advantageous for large spectral coverage and high frequency resolution. Besides, the frequency accuracy and precision also depend critically on the chirp linearity of the laser. While extensive efforts have been made on the development of many kinds of frequency-agile, widely tunable, narrow-linewidth lasers, wideband yet precise methods to characterize and linearize laser chirp dynamics are also demanded. Here we present an approach to characterize laser chirp dynamics using an optical frequency comb. The instantaneous laser frequency is tracked over terahertz bandwidth at 1 MHz intervals. Using this approach we calibrate the chirp performance of 12 tunable lasers from Toptica, Santec, New Focus, EXFO, and NKT that are commonly used in fiber optics and integrated photonics. In addition, with acquired knowledge of laser chirp dynamics, we demonstrate a simple frequency-linearization scheme that enables coherent ranging without any optical or electronic linearization unit. Our approach not only presents novel wideband, high-resolution laser spectroscopy, but is also critical for sensing applications with ever-increasing requirements on performance.
Photonics Research
2024, 12(4): 663
Author Affiliations
Abstract
1 Qaleido Photonics, Hangzhou 310000, China
2 International Quantum Academy, Shenzhen 518048, China
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
5 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
6 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
7 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
The foundry development of integrated photonics has revolutionized today’s optical interconnect and datacenters. Over the last decade, we have witnessed the rising of silicon nitride (Si3N4) integrated photonics, which is currently transferring from laboratory research to foundry manufacturing. The development and transition are triggered by the ultimate need for low optical loss offered by Si3N4, which is beyond the reach of silicon and III-V semiconductors. Combined with modest Kerr nonlinearity, tight optical confinement, and dispersion engineering, Si3N4 has today become the leading platform for linear and Kerr nonlinear photonics, and it has enabled chip-scale lasers featuring ultralow noise on par with table-top fiber lasers. However, so far all the reported fabrication processes of tight-confinement, dispersion-engineered Si3N4 photonic integrated circuits (PICs) with optical loss down to few dB/m have only been developed on 4-inch (100 mm diameter) or smaller wafers. Yet, to transfer these processes to established CMOS foundries that typically operate 6-inch or even larger wafers, challenges remain. In this work, we demonstrate the first foundry-standard fabrication process of Si3N4 PICs with only 2.6 dB/m loss, thickness above 800 nm, and near 100% fabrication yield on 6-inch (150 mm diameter) wafers. Such thick and ultralow-loss Si3N4 PIC enables low-threshold generation of soliton frequency combs. Merging with advanced heterogeneous integration, active ultralow-loss Si3N4 integrated photonics could pave an avenue to addressing future demands in our increasingly information-driven society.
Photonics Research
2023, 11(4): 558
Bin Chen 1,2,3Jinbao Long 1,2,3Hongtai Xie 1,2,3Chenyang Li 1,2,3[ ... ]Shuai Chen 1,2,3,*
Author Affiliations
Abstract
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2 Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
The gravimeter based on atom interferometry has potential wide applications on building gravity networks and geophysics as well as gravity assisted navigation. Here, we demonstrate experimentally a portable atomic gravimeter operating in the noisy urban environment. Despite the influence of noisy external vibrations, our portable atomic gravimeter reaches a sensitivity as good as 65 μGal/Hz and a resolution of 1.1 μGal after 4000 s integration, being comparable to state-of-the-art atomic gravimeters. Our achievement paves the way for bringing the portable atomic gravimeter to field applications.
atomic gravimeter noisy environment 
Chinese Optics Letters
2020, 18(9): 090201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!